Using PQR-trees for reducing edge crossings in
layered directed acyclic graphs

Jodao Rubens Marchete Filho, Celmar Guimaraes da Silva
Software Engineering and Information Systems Laboratory
School of Technology, University of Campinas
Limeira, Brazil

Original DAG

| —» f{acbde} —» @00 @@

9 @ G @ G —» \ PQR-tree for layer 1
\

o<

vont
B

x“’ —p | PQRtreeforlayer2 | —p» {h,ijf.g} — 1;
X

Q“@Q@ PQR-tree for layer 3 \—» {mokln}—»

Fig. 1.

PQR-tree frontier

Teasing result of our method: from the data input (left), we create a PQR-tree for each layer, extract

their frontiers (middle) and reorder layers according to them (right), aiming to reduce edge crossings.

Abstract—Minimizing edge crossings of a layered directed
acyclic graph is necessary for easing its visual analysis. Sugiyama
framework introduced barycenter heuristic (BC) as a method for
crossing reduction in this kind of graphs. This paper presents
a new algorithm that enhances the performance of this method
by the use of PQR-trees, a recent data structure that represents
permutations of a set of elements that obey some defined grouping
restrictions. We improved the quality of BC method by using
PQR-trees in the permutation of the nodes in each layer of the
graph. Our approach reaches 10% less crossings than the original
BC in our experiments at the cost of multiplying its average
execution time by approximately 1.45. Besides, this time remains
lower than 100 ms for the tested graphs, which is a necessary
condition for providing responsive interaction.

Keywords-Data visualization; graph theory; user interfaces

I. INTRODUCTION

Reducing the number of edges crossing is a very influ-
ential aesthetic criterion for helping people to understand
the relations present in graphs [1]. This is also true for
directed acyclic graphs (a.k.a. DAGs), data structures used to
represent hierarchy-related problems, such as PERT diagrams,
VLSI circuits, genealogical structures and class dependency
on software [2]. Many approaches represent them as layered
DAGs, i.e., they distribute graph nodes on horizontal (or
vertical) sets called layers [3].

A drawing convention adopted for DAGs includes three
items [4]: edges must be in a same direction (flow), nodes
must be equally distributed over the drawing area, and edge
crossings must be minimal. Minimizing these crossings, how-
ever, is a NP-complete problem [5], which demands alternative
techniques for reaching a low number of crossings as fast as
possible (if we intend to present it for users). Many approaches
that produce good results for this problem are based on

Sugiyama framework [3], which uses barycenter (BC) and
median heuristic methods for crossing reduction.

However, there is no guarantee that these methods will
achieve the best results and will be performed as fast as needed
to reach them.

Contributions: This paper presents a different approach
for crossing minimization problem in layered DAGs. By
introducing PQR-trees to this context, we achieve significant
improvements on BC method results, at an extra time cost. In
particular, we test our approach with North DAGs [6]]. In our
experiments, we evaluate that our BC+PQR method returns
10% less crossings than the original BC, and spends in average
45% more time than BC, which validate our approach.

A. Related work

We can classify the approaches for crossing minimization
in DAGs in two categories: approaches that follow Sugiyama
framework, and approaches that do not (such as planariza-
tion [7]). We will focus on the first category.

The Sugiyama framework (3] defines the following sequence
of steps for drawing a DAG: defining a layer for each node,
creating dummy nodes for edges whose nodes belong to non-
adjacent layers, minimizing edges crossing and defining coor-
dinates for each node. We highlight the crossing minimization
step, also called multi-layer crossing minimization (MLCM)
step, which tries to define an ordering for the nodes of each
layer. A technique called layer-by-layer sweep defines that
solving a MLCM problem demands to iterate through pairs
of adjacent layers of the DAG in order to solve a two-layer
crossing minimization (TLCM) problem related to each pair
of layers [2], i.e., minimizing crossings of bipartite graphs.

Many approaches have been used for solving TCLM
and MCLM problems. They include methods that use tech-

niques such as linear, quadratic and semidefinite program-
ming [8] [9] [10], tabu-search and genetic algorithms [11].
However, barycenter (BC) and median heuristic methods [3]]
are still the main reference for solving TLCM problems. In
a TLCM problem, barycenter (or median) heuristic calculates
the position of a node as the average (or median) position
of its neighbors in the opposite layer. Layer-by-layer sweep
and BC may be combined to solve MLCM problems; as a
stop condition, the sweep process must stop after a predefined
number of fails, i.e., situations in which the number of
crossings was not reduced after a sweep [12].

It is worth to note the relationship between TLCM and
binary matrix reordering. Given a bipartite graph and its
adjacency matrix (which is binary), Mékinen and Siirtola [[13]
perceived that minimizing edge crossings by BC heuristic
tends to group cells with value ”1” in top left and bottom
right corners of this matrix.

B. Technique overview

Given our previous experience on applying PQR-trees for
solving binary matrix reordering [14], and the relationship
between this problem and crossing minimization, we present
some approaches for using PQR-trees for solving MLCM.
We formulate the problem of reducing edge crossings in a
DAG as many problems of finding good permutations of
layer elements. PQR-trees may represent permutations of these
elements according to some rules which try to group nodes
in layers. We use this permutation to reorder each layer and
thereby reduce crossings. This process is used together with
BC method as means to improve its results.

II. TECHNICAL BACKGROUND

In this section, we briefly present what is a PQR-tree. The
reader can find a more complete exposition of PQR-trees in
the work of Telles and Meidanis [[15].

A. PQR-tree

A PQR-tree [15] is a data structure that represents a
subset S of all possible permutations of a set of elements
U. Each permutation of this subset tries to agree to a set
R of restrictions. Each restriction is a subset of U whose
elements should be consecutive in the permutations of S. A
PQR-tree T'(U, R) is a tree whose leaves are elements of U,
and whose non-leave nodes defines how these leaves may be
permuted. Non-leave nodes may be from three types: P and R-
node’s children admit any kind of permutation, and Q-node’s
children may be only reversed. For example, Fig. [2a|represents
a PQR-tree related to U = {a, b, ¢,d, e} and to the restriction
set R = {{a,b},{d,e},{c,d}}. Observe that the frontier of
this tree (i.e., its leaves, read from left to right; in this case,
{a,b,e,d,c}) is one of the permutations in S.

R-nodes are used when it is impossible to obey simul-
taneously to all restrictions. In the previous example, if
R = {{a,b},{a,c},{b,c},{d,e}}, every permutation of the
elements of U disagree with some of the three first restrictions.
Therefore, a R-node becomes a parent node of a, b and c,

Represented permutations:

{a,b,e,d,c} {b,a,ed,c}
{a,b,c,de}{b,a,cd,e}
{e,d,c,ab}{ed,cb,a}
{c,d,e,ab}{c,deb,a}

a b edc

(a) A PQR-tree with two P-nodes (empty circles) and a Q-node (empty
rectangle).

Represented permutations:

{a,b,c,d,e}{a,b,c,e,d}{d,e,ab,c}{ed,ab,c}
{b,a,c.d,e}{b,aced}{deb,ac}{edbac}
{a,c,b,d,e}{a,c,b,ed} {d,e,acb}{edac,b}
{b.c,ad,e}{b,c,aed} {deb,.ca}{edbca}
{c.ab,d,e}{c,ab,ed}{d,e,c,ab}{edc,ab}
{c,b,a,d,e}{c,b,a,ed}{d,ecb,a}{edcb,a}

(b) A PQR-tree with two P-nodes (empty circles) and a R-node (circle with
a ”"R” inside it).

a b ¢ d e

Fig. 2. Examples of PQR-trees and the permutations that they represent.

as shown in Fig. 2b Note that in this case the permutations
represented by the PQR-tree still obey to the last restriction
of R. Indeed, PQR-trees return an usable solution even when
there is not a perfect one.

It is worth to consider that the construction of a PQR-tree
has an almost linear time complexity [15].

B. Usual adaptation

This concept has been used for solving problems similar
to ours [14] but related to binary matrix reordering. In this
case, an algorithm constructs two PQR-trees, one for matrix
columns and other for matrix rows. For the first one, the
algorithm defines U as the set of columns, and R as a set
of groups of columns that should be consecutive (i.e., similar
columns). The frontier of this tree has an ordering of columns
that tries to create these groups. The second tree is created in a
similar way, but for rows. Therefore, the algorithm permutes
columns and rows of the original matrix in the same way
defined by the given orderings.

IITI. TECHNIQUE ADAPTATION

Our technique aims at obtaining a low number of crossing
edges in DAGs in a short execution time. PQR-trees suit to
this problem since it is formulated as follow:

A. Formulation

Given a MLCM problem, we want to reduce the number
of crossing edges of the original graph layout by permuting
nodes of each layer.

B. Solution

We adapted the use of PQR-trees for DAGs, aiming to
group nodes of a same layer that have a common neighbor
in any adjacent layer. Therefore, we construct a PQR-tree for
each layer for the purpose of reorganizing it and minimizing
crossings. Given a layer L;, we define U as the elements of

L;. For the purpose of grouping nodes that have a common
neighbor in any adjacent layer, we fix the order of L;_; and
L;y; (when they exist), and for each node n of these layers,
we define a restriction whose elements are the neighbors of
n in L;. After that, we create a PQR-tree based on U and R,
and we define the order of L; elements as the same order of
the tree frontier. Fig. [I] summarizes this approach.

Some preliminary experiments revealed that this approach
alone did not produce good results, probably because our prob-
lem is a MLCM and not a TLCM (which is closer to a single
matrix reordering problem). Therefore, we combine it with BC
method in two ways. In the first one, we execute our approach
after a given number f of fails of BC, chosen empirically, in
order to help BC method to find a better solution. We called
this combination BC+PQR. In the second one, we execute our
approach only one time, after the execution of BC, aiming to
accelerate BC. We called this second combination POQR+BC.

C. Initialization and tuning

Our approaches consider that its input is a proper hierar-
chy [3] (a DAG in which every edge connects two consecutive
layers). A non-proper hierarchy may be converted into a proper
one by the insertion of dummy nodes in the edges.

For BC+PQR, it is necessary to define the value of f.
PQR+BC does not have a tuning parameter.

IV. IMPLEMENTATION

We built the experiment on OGDF (Open Graph Drawing
Framework) [12], a C++ framework that implements the
whole Sugiyama framework, including BC and other crossing
minimization methods. OGDF is expansible, so we created
functions that implement our approaches and attached them
to the BC implementation. We also used a PQR-tree imple-
mentation in Java, which we connected to OGDF through JNI.

V. EXPERIMENT

We validate our 2 methods through an experiment used
to compare their crossing minimization performance versus
BC method. The performance measures were: number of
crossings, execution time of the crossing minimization step
and the relationship between them (also used by Jiinger &
Mutzel [8]). We also want to analyze if the execution time
of these methods is less than 100 ms, so they would be
appropriate for providing responsive interaction [16] in user
interfaces.

VI. RESULTS AND DISCUSSION

We performed the above-mentioned experiment on a test
set called North DAGs [6]], which was previously layered by
OGDF (longest path ranking algorithm). This set has a high
concentration of low density graphs (approximately 82% of
its graphs has density < 0.4). We calculated DAG density
according to Kuntz et al. [L1]. For each graph, we tuned
BC+PQR for using f=8 (as an empirically defined value).
Besides, BC was tuned for 1 run and also 8 fails. Fig. E|
presents examples of these methods applied to a graph of this
test set.

I BC+PQR WINS
= AVG TIME BC+PQR (seconds)

= BC WINS ww DRAWS
——AVG TIME BC (seconds]

150

Quantity of DAGs
Execution Time

o HE L e : 2
001 0102 0203 0304 0405 0506 0607 0708 0809 091
Density of DAGs

(a) Comparison of BC+PQR and BC methods

= PQR+BC WINS
e AVG TIME PQR+BC (seconds)

I BC WINS = DRAWS
= AVG TIME BC (seconds]

Quantity of DAGs
Execution Time

001 0102 0203 0304 0405 0506 0607 0708 0809 091
Density of DAGs

(b) Comparison of PQR+BC and BC methods

Fig. 3. Comparison of crossing minimization approaches. AVG TIME stands
for the average execution time of a method.

TABLE I
QUALITY MEASURES

BC+PQR | PQR+BC
Number of graphs
- Method wins BC 29% 21%
- Draw 69% 50%
- BC wins method 2% 29%
Crossings
- Average crossing reduction
(relative to BC results) 10% 1%
- Average crossing reduction
(relative to BC results in wins) 34% 39%
Time
- Average time (relative to BC) 145% 184%

A. Quality and Performance

We report on Fig. 3a a comparison of BC and BC+PQR
methods on a computer with Intel Core i5 processor at 2.5
GHz. We also present on Fig. [3b] a comparison of BC and
PQR+BC methods on the same computer. These graphics
indicate that our methods lose only in few number of graphs
for BC. They also show that all methods spend more time
in the lower density graphs. However this time is lower than
100 ms in average, which is desired for providing responsive
interaction.

The quality of our approach can be measured by analyzing
number of wins of each method, average crossing reductionand
average time (both relative to BC), as reported on Table I}

We highlight the performance of BC+PQR, which loses in

-

(b) Layout after BC method: 127 crossings

s
A J
/

—

~

EE\
)
/

E|

(d) Layout after BC+PQR method: 83 crossings

Fig. 4. Examples of graph layouts and respective number of crossings.

crossing reduction to BC in only 2% of the graphs, spending
45% more time (which is less than 2 ms in average) and
reducing 34% more crossings in average than BC when
BC+PQR wins. PQR+BC performance is not so good, because
it almost doubles the BC execution time and loses in crossing
reduction to BC in 29%, even though it reduces 39% more
crossings when it wins. If we consider the entire graph
package, BC+PQR reduces 10% more crossings in average
than BC, and PQR+BC only reduces 1%.

B. Limitation

It is worth to note that our experiment used only North
DAGs, and we must be aware of this condition before gen-
eralizing these results for any DAG set. We plan to analyze

more graphs aiming to improve our tests and reinforce the
effectiveness of our techniques.

VII. CONCLUSION

In this paper, we introduced the use of PQR-trees for edge
crossing minimization on DAGs. By using them for reordering
layers of DAGs, we obtained a good cost-benefit with our
methods, specially with BC+PQR: 10% less edge crossings in
average, with 45% extra time, when compared to BC method.
Ongoing works include: testing our methods with other graph
packages; creating and testing alternative approaches based on
median heuristic instead of BC; and better understanding why
and in which cases our approaches win the other ones.

ACKNOWLEDGMENT

We thank Prof. Jodo Meidanis (Institute of Computing,
University of Campinas) by the use of his PQR-tree package,
and FAPESP for financial support.

REFERENCES

[1] H. C. Purchase, “Which aesthetic has the greatest effect on human
understanding?” in Graph Drawing, ser. Lecture Notes in Computer
Science, G. D. Battista, Ed. Springer Berlin / Heidelberg, 1997, vol.
1353, pp. 248-261.

[2] G. D. Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph Drawing:
Algorithms for the Visulalization of Graphs. Prentice Hall, 1998.

[3] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understand-
ing of hierarchical system structures,” [EEE Transactions on Systems,
Man and Cybernetics, vol. 11, no. 2, pp. 109-125, feb. 1981.

[4] P. Eades and L. Xuemin, “How to draw a directed graph,” in /EEE
Workshop on Visual Languages, oct 1989, pp. 13-17.

[5] P. Eades and N. Wormald, “Edge crossing in drawing of bipartite
graphs,” Algorithmica, vol. 11, pp. 379-403, 1994.

[6] G. D. Battista, A. Garg, G. Liotta, A. Parise, R. Tamassia, E. Tassinari,
F. Vargiu, and L. Vis-mara, “Drawing directed acyclic graphs: An
experimental study,” Int. J. Comput. Geom. Appl., vol. 10, no. 6, pp.
623-648, 2000.

[7]1 M. Chimani, C. Gutwenger, P. Mutzel, and H.-M. Wong, “Upward
planarization layout,” in Graph Drawing, ser. Lecture Notes in Computer
Science, D. Eppstein and E. Gansner, Eds. Springer Berlin / Heidelberg,
2010, vol. 5849, pp. 94-106.

[8] M. Jiinger and P. Mutzel, “2-layer straightline crossing minimization:
performance of exact and heuristic algorithms,” Journal of Graph
Algorithms and Applications, vol. 1, pp. 1-25, 1997.

[9]1 L. Zheng and C. Buchheim, “A new exact algorithm for the two-

sided crossing minimization problem,” in Proc. of the First International

Conference on Combinatorial Optimization and Applications, ser. CO-

COA’07. Springer-Verlag, 2007, pp. 301-310.

M. Chimani, P. Hungerldnder, M. Jiinger, and P. Mutzel, “An SDP ap-

proach to multi-level crossing minimization,” in Proc. of the Thirteenth

Workshop on Algorithm Engineering and Experiments (ALENEX), 2011.

P. Kuntz, B. Pinaud, and R. Lehn, “Minimizing crossings in hierarchical

digraphs with a hybridized genetic algorithm,” Journal of Heuristics,

vol. 12, pp. 23-36, 2006.

OGDF, “Open graph drawing

http://www.ogdf.net/doku.php/start, 01/2012.

E. Mikinen and H. Siirtola, “Reordering the reorderable matrix as an

algorithmic problem,” in Proc. of the First International Conference on

Theory and Application of Diagrams, ser. Diagrams "00. London, UK,

UK: Springer-Verlag, 2000, pp. 453-467.

M. F. de Melo, “Improvement of PQR-Sort algorithm for binary ma-

trices reordering,” Master’s thesis, School of Technology, University of

Campinas, Brazil, 2012.

G. P. Telles and J. Meidanis, “Building PQR trees in almost-linear time,”

Eletronic Notes in Discrete Mathematics, vol. 19, pp. 33-39, 2005.

R. Spence, Information Visualization. ~Addison-Wesley, 2001.

[10]

[11]

[12] framework,”

[13]

[14]

[15]

[16]

	Introduction
	Related work
	Technique overview

	Technical background
	PQR-tree
	Usual adaptation

	Technique adaptation
	Formulation
	Solution
	Initialization and tuning

	Implementation
	Experiment
	Results and Discussion
	Quality and Performance
	Limitation

	Conclusion
	References

