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Abstract—The large number of surveillance cameras available
nowadays in strategic points of major cities provides a safe
environment. However, the huge amount of data provided by
the cameras prevents the manual processing requiring the appli-
cation of automated methods. Among such methods, pedestrian
detection plays an important role in reducing the amount of data
by locating only the regions of interest for further processing
regarding activities being performed by agents in the scene.
However, pedestrian detection methods currently available are
unable to process such large amount of data in real time.
Therefore, optimization techniques have to be employed to allow
real-time detection even when large volumes of data need to
be processed. Focusing on optimization, this work proposes a
novel approach that performs a random filtering in the image to
discard a large number of detection windows quickly allowing a
reduction in the computational cost.
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I. INTRODUCTION

Pedestrian detection plays a major role in applications such
as surveillance due to the need of processing a large amount of
data captured from multiple cameras and locating the agents
that are performing some activity of interest. Therefore, the
volume of data capture can be reduced focusing only on those
regions of interest so that problems such as person tracking,
face recognition, person re-identification, action and activity
recognition can be solved and the activities performed by the
agents in the scene might be analyzed.

Several challenges are faced by the pedestrian detection
problem [1]. Among them are the changes in appearance
due to different types of clothing, illumination changes and
pose variations, the low quality of the data acquired, and
the possible small size of the pedestrian on it, which makes
the detection process harder. In addition, a large number of
applications require a high performance and reliable detection
results, which increases the need for efficient and accurate
pedestrian detection approaches.

Even though many pedestrian detection have been proposed,
most of the times they need to be employed on domains in
which millions of images need to be processed quickly. How-
ever, the methods currently available are not able to provide
such performance [2]. Therefore, the development of methods
to reduce the computational cost significantly is desirable. One
way of achieving that is to focus on optimization approaches.

The most common are those based on cascade of rejection,
region of interest filtering and GPU-based processing to reduce
the number of detection windows to be evaluated.

This work proposes a novel approach to optimize the
detection by performing a random filtering in the image to
discard a large number of detection windows and therefore
reduce the computational cost. The experimental evaluation
shows in two publicly available datasets (ETHZ and INRIA)
that it is possible to discard a large number of detection
windows and still achieve very accurate results. In addition,
future directions for this work, based on learning the object
distribution for performing further rejection of windows in the
scene, are remarked.

II. RELATED WORK

Several methods address the aforementioned problem in-
duced by dense search in sliding window approaches. Some
proposed heuristics evaluate windows in fixed sizes, which are
subsampled for certain strides [3], [4]. The larger the stride,
the more sparse the sampling of the image will be.

A common approach used to optimize object detection is
based on a cascade of rejection, composed by weak classifiers
learned during the training. The main idea behind this ap-
proach is to use simple classifiers to discard detection windows
that are easy to classify. While the remaining windows of a
stage advance through the cascade, more complex classifiers
are used. Viola and Jones [5] propose an object detector
using this technique by successively combining classifiers
with increasing complexity, building the cascade stages and
rejecting a large amount of windows in early stages. Applying
a similar approach Zhu et al. [6] performed the extraction of
HOG descriptors using a real time processing framework and
achieved a detection rate comparable to that achieved by Dalal
and Triggs [3].

Focusing on searching only promising regions of the im-
age, Lampert et al. [7] propose a method to perform object
localization relying on a branch-and-bound approach that
finds the global optimum of a quality function over every
possible subimage. It returns the same object locations that an
exhaustive sliding window approach would. At the same time
it requires fewer classifier evaluations than there are candidate
regions in the image, typically running in linear time or faster.



Saliency detectors are able to detect regions of interest by
simulating the behavior of the human visual system. In the
first phase, called pre-attentive visual search, they quickly
detect the possible positions of proto-objects in the image.
The obtained saliency map suggests the position of the proto-
objects. Feng et al. [8] propose a filtering method that finds
the salience of each window and segments the image into
regions based on their similarities. In order to find the most
probable window to contain a salient object, it is employed
the difference among regions given their LAB histograms and
spatial distances.

For detection of objects in different sizes, [9], [10] propose
the direct analysis of features extracted in multiple scales of
the image. Based on saliency detectors, Grimaldo et al. [11]
propose a method based in multi-scale Spectral Residual
Analysis (MSR), in which an image is resized by several times
a factor to cover different scales. In each resizing, a saliency
map is created and a sliding window approach is applied,
then a quality function is computed in each map in order to
discard regions. In comparison with a regular sliding window
approach, the MSR method was able to reduce in 75% the
number of windows to be evaluated by an object detector and
improving the detection rate in most cases.

For accelerated computation and improvement of object
detectors, the multicore architecture of GPUs can be very
handy. In order to do that, the algorithms must be designed to
explore those hardware features. Pedestrian detection on GPUs
can improve the feature extraction, since it is a stage of high
computational cost. Wojek et al. [12], Zhang et al. [13] and
Masaki et al. [14] demonstrated efficient parallel techniques
using GPU in order to do HOG features extraction.

III. PROPOSED APPROACH

The first step of the proposed method consists of sampling
a set of detection windows in several scales using a sliding
window approach. The sampling procedure starts from a
minimum width and height, generating several windows of
fixed size from the image. The entire image is scanned by
this detection window size, which is moved by a stride x and
y—computed as a percentage of the height and width of the
window, respectively. After the entire image has been scanned,
the detection window size is resized by a scaling factor and
the procedure is repeated until the detection window’s size
reaches a maximum width and height.

With the set of all sampled detection windows, the next
step is to discard a random subset of these windows. In
this work, we consider that the pedestrians are uniformly
distributed in the image, hence we are performing an uniform
randomly removal of windows. However, it is possible to
see in Section IV that the pedestrians’ distribution does not
follow a uniform distribution. As future work, we intend to
exploit that knowledge to discard windows based on a learned
distribution, maintaining more windows in regions more likely
to contain pedestrians and discarding windows in regions with
low probability of pedestrian presence. After discarding the

detection windows, the next step is to feed the detector with
the selected windows.

Why does the random rejection of detection windows work?
The problem of classifying windows as containing pedestrians
or not may be seen as a task of finding an optimal subset
of windows containing humans from a finite set of windows.
As most maximum search problems, the exact solution is
computationally expensive. Instead, it is possible to find almost
optimal approximate solutions by using probabilistic methods
as the one described as follows.

The problem at hand might be formulated as: given a set of
m windows, where M := {f1, . . . , fm}, and Q[f ] a criterion
to evaluate whether a detection window is covering a portion
with a pedestrian, the problem consists in finding a window f̂
that maximizes Q[f ]. In pedestrian detection, one is interested
in finding not only the window f̂ that maximizes Q[f ], but
also a subset of windows with the largest f̂ , since more than
one pedestrian might be in the image.

To solve the aforementioned problem, all terms Q[fi] must
be computed, which demands m detection window evalu-
ations. Due to the multiple scales that are considered to
locate all pedestrians in the scene, the number of extracted
windows is large for a given image, rendering this operation
too expensive. For instance, for an image with dimensions
640 × 480 pixels, there are approximately 60,000 detection
windows that need to be evaluated to detect pedestrian in
multiple scales. Therefore, it is imperative to find a cheaper
approximate solution.

Schölkopf et al. [15] demonstrated that, selecting a random
subset M̃ ⊂ M that is sufficiently large, one can take the
maximum over M̃ as an approximation of the maximum over
M . If a small fraction of Q[fi] whose values are significantly
smaller or larger than the average does not exist, one can
obtain a solution that is close to the optimum with high
probability.

To compute the required size, m̃ = |M̃ | (M̃ ⊂ M ), of a
random subset to achieve a desired degree of approximation,
Schölkopf et al. show that one can use the following equation

m̃ =
log (1− η)
ln (n/m)

(1)

where η is the desired confidence and n denotes the number
of elements in M having Q[f ] smaller than the maximum of
Q[f ] among the elements in M̃ .

In the pedestrian detection problem based on sliding win-
dows, one human is covered by more than one detection
window leading to a correct detection. That behavior is due
to the redundancy resulting from the small strides in x and y
and multiple scales. In fact, the number of correct windows
increases linearly with the number of detection windows in
the image. For instance, given an image with m = 60,000
detection windows uniformly sampled in an image 640×480,
583 windows will contain the correct location of a pedestrian
(high Q[fi]). According to the theorem, a random sample with
m̂ = 133 will have a 95% probability that at least one of
583 windows contains pedestrians. Figure 1 illustrates that, by



Fig. 1: Mean number of detection windows covering a pedestrian
in the INRIA dataset. As standard approach to determine whether
a pedestrian is covered by a detection window, we consider that a
window A covers a ground-truth window B when their intersection
divided by their union is greater than 0.5.

showing the number of windows covering a pedestrian when
a small percentage of the detection windows is selected at
random.

Previously, Zhu et al. [6] have adopted this theorem during
their training phase of a cascade of rejection. Each stage
would require to evaluate 5,301 blocks to be considered, which
is very time consuming. To reduce the number of evaluated
blocks, they applied this sampling theorem and selected only
250 blocks at random each round.

IV. EXPERIMENTAL EVALUATION

This section analyzes the impact of the proposed methodol-
ogy. The experimental evaluation focus on three main aspects.

The first aspect examines if there is no pedestrian missing
after applying uniform random filtering. This can be deter-
mined by applying random filtering and evaluating the results
obtained with respect to the ground-truth.

Even though the method may obtain high recall rates
regarding the ground-truth, the windows are not necessarily
centralized over the pedestrians. They might be displaced by
an offset. To ensure that a pedestrian detection method may
detect pedestrians in these dislocated windows, it is analyzed
the trade off between the amount of subwindows randomly
discarded and the results of a pedestrian detector over these
windows.

Finally, the last aspect explores the distribution of the
pedestrians’ centroids into the datasets. This is a preliminary
study for future works.
Experimental setup. The windows are sampled using a
minimum width and height of 28 × 60. The window size is
rescaled by a factor of 1.15 until it reaches the maximum
width and height of 260×700. The windows are displaced by
a stride of 12% and 4% of the width and height, respectively.
Two different datasets were used in this evaluation, the ETHZ
pedestrian dataset [16] and INRIA Person Dataset [3].
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Fig. 2: Achievable recall as a function of variable number of selected
windows, evaluated on INRIA and ETHZ datasets.

Ground-truth comparison. To verify the number of windows
required to cover all pedestrians over an image, estimated
by the theorem in Section III, this experiment determines
how many windows are covering the pedestrian’s bounding
boxes according to their position given by the ground-truth
as a function of the percentage of total detection windows
sampled at random. Figure 2 shows that a random selection
of 1.4% of detection windows is enough to detect more than
90% of pedestrians for both INRIA and ETHZ datasets. Note
that these results show the maximum achievable recall if the
detector provides perfect results, the next experiment evaluates
the actual recall achieved by the PLS detector [17]1

Pedestrian detector. After performing random filtering, it is
possible to see that the selected windows practically do not
miss any person in these datasets. However, these windows
will be processed by a pedestrian detector, which may not
obtain high accuracy due to these dislocated windows. To
evaluate that, we feed the PLS detector with the random fil-
tering output in order to classify these windows as containing
pedestrians or not.

The results in Figure 4 show the recall obtained at one false
positive per image (FPPI). Even after performing random fil-
tering, the accuracy is still comparable to the original detection
method, which considers 100% of the detection windows (no
windows are discarded). However, to achieve the same results,
the number of selected detection windows had to be larger
than the result achieved by the ground truth experiment. This
indicates that, even though the correct detection windows have
been selected, the detector is not providing high responses for
all the correct windows.
Distribution of objects. This work considers that pedestrians
are uniformly distributed over an image. However, this is not
necessarily true. This assumption may lead to more erroneous
sampling or inefficient sampling.

We build histograms of the x- and y-coordinates of the

1For this work, the PLS detector was executed with a single stage.
Therefore, it is not the same version evaluated in [17].
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(a) INRIA (x-axis)
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(b) INRIA (y-axis)
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(c) ETHZ (x-axis)
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(d) ETHZ (y-axis)

Fig. 3: Histogram of the distribution of the pedestrian according to the image coordinates in the x and y axes.

Fig. 4: Recall at 1 FPPI achieved when the selected detection
windows are fed to the PLS detector. The execution of the detector
for 100% of the detection windows (without selection) achieved a
recall of 0.612.

pedestrians’ centroids for every image. These histograms were
collected from INRIA and ETHZ (sequence #1). According
to the histograms displayed in Figure 3, it is clear that the
distribution of the pedestrians in the frames is not uniform.
We intend to study such characteristic in future works aiming
at reducing even more the number of detection windows that
have to be randomly sampled to detect all pedestrians in the
image.

V. CONCLUSIONS AND FUTURE WORKS

This work proposed a detection optimization based on ran-
dom filtering to discard a large number of detection windows
and therefore reduce the computational cost. Our experimental
evaluation showed that accurate results may be achieved even
when a large number of detection windows are discarded.

As future works, we intend to finish evaluating this method-
ology in the ETHZ dataset. In addition, we will exploit the
pedestrians’ distribution in a dataset and measure the gain of
this approach and, supported by the results of the experiment
considering the ground truth and the real detector, we intend
to devise a technique to improve the location of the sampled
detection windows.
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[12] C. Wojek, G. Dorkó, A. Schulz, and B. Schiele, “Sliding-Windows for
Rapid Object Class Localization: A Parallel Technique,” in Proceedings
of the 30th DAGM symposium on Pattern Recognition. Springer-Verlag,
2008, pp. 71–81.

[13] L. Zhang and R. Nevatia, “Efficient scan-window based object detection
using GPGPU,” in IEEE Computer Vision and Pattern Recognition
Workshops, 2008.

[14] I. Masaki, B. K. Horn, B. Bilgiç et al., “Fast human detection with
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