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Abstract—Ground-truthed datasets are fundamental for per-
formance evaluation of handwritten mathematical expression
recognition methods. In order to automate the construction of
such datasets, some approaches consider transcription of model
expressions followed by automatic assignment of symbols in the
transcribed expression to the corresponding symbols in the model
expression. In order to cope with observed difficult cases, we
propose a structural approach based on belief propagation to
match the corresponding symbols in the expressions. Preliminary
results suggest that the proposed approach can outperform
previous methods.
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I. INTRODUCTION

Given a task, ground-truthed datasets serve as common base
to evaluate and compare performance of different methods
for that task. In the problem of recognition of handwritten
mathematical expressions (MEs), a main concern with the
creation of such datasets is the effort needed to manually attach
ground-truth at the different levels of the expressions – that
is, grouping of strokes that represent a same symbol, labeling
of individual symbols, and identification of relations between
symbols – and the error prone nature of this task.

In [1], [2], the authors proposed an expression matching-
based approach to automate much of the ground-truthing
work. Given a model expression with ground-truth data and
a transcription of it (called input expression) with no ground-
truth data, symbols of the input expression are associated to
the corresponding ones in the model. The resulting corre-
spondences are used to automatically transfer all ground-truth
information from the model to the input. Thus, expression
datasets with ground-truth data can be created from a set of
model expressions, making different people transcribe them,
and using the proposed expression matching method. Two
examples of expression matching, both to a same model
expression, are illustrated in Fig. 1.

The average correct matching rate on the ExpressMatch
dataset (comprising 56 types of expressions and 901 input
expressions) are, according to [2], around 97%. However, it
has been observed that due to handwritten variability and
structural differences, the matching performance was very
poor for some particular pairs of model-input expressions. For

Fig. 1. Matching of input expressions (bottom ones) to the model (top one).
Symbols correspondences are shown with dashed lines.

example, Fig. 2 shows several matching errors that are due to
the horizontal numerator displacement: while the numerator
of the expression at the bottom (input) is horizontally placed
approximately at the center of the fraction line, in the model
expression (top) the numerator is displaced to the left relative
to the center of the fraction line.

Fig. 2. Matching errors due to numerator horizontal displacement. Lines
indicate incorrect symbol correspondences.

We propose a structural matching approach based on be-
lief propagation [3] to improve the correspondence between
symbols of a pair of expressions. Preliminary results suggest
that the proposed approach can outperform previous methods,
specially under challenging scenarios as the ones described
above. The key step is to find a robust structure capturing a
global arrangement of symbols that is invariant among corre-
sponding expressions. Currently, our research efforts are being
dedicated to find such robust structures within expressions.

II. BACKGROUND

The matching problem [1] mentioned above is modeled
as a linear assignment problem. Expressions are modeled as

mailto:alexandre.noma@ufabc.edu.br


graphs and matching costs between symbols consider both
local (symbol) as well as global (structural) features. The
optimal one-to-one assignment is computed using the well-
known Hungarian algorithm. This formulation can be viewed
as a simple graph matching problem: each expression is
represented by a graph, where each vertex corresponds to a
symbol, and edges encode the spatial configuration between
symbols.

Through experimentation on ExpressMatch dataset [2],
some characteristics that affect the performance of the match-
ing technique were observed and reported: (i) horizontal
displacement of numerators or denominators in relation to
a fraction line (such as the case shown in Fig. 2), (ii)
symbols with irregularly proportional sizes (for example, the
square root and fraction line of the expression at the top
in Fig. 3), and (iii) non-uniform spacing, either decreasing or
increasing, between symbols as the symbol positions advance
toward the right extreme of the expression, or yet non-uniform
spacing between sub-expressions (as in the bottom expression
in Fig. 3). In this work, the proposed method is evaluated on
these challenging cases.

Fig. 3. Problematic expressions: symbols with irregularly proportional sizes
(top), and irregular spacing between symbols (bottom).

A. Graph Matching

Popular algorithms for graph matching include approaches
based on search [4], [5] and continuous optimization [6], [7],
among others.

In some cases, the graph matching problem can be sim-
plified. Recently, deformed graphs have been proposed for
matching and interactive segmentation [4], [5]. Both cases
involve a method based on a global cost evaluating the vertex
attributes and structural information. The structural informa-
tion, or spatial configuration between vertices, is used by
deformed graphs to significantly reduce the search space. The
matching method proposed in [1] and briefly described above
is based on these ideas. Unfortunately, most of search-based
methods are based on heuristic approaches, and generally do
not consider the context of the neighborhood, in the sense that
the matching of a pair of vertices can influence the matching
of their neighbors.

Another branch of techniques involves continuous optimiza-
tion to approximate the original graph matching problem by
relaxing the integer constraint. An example is the graduated
assignment algorithm, which was popularized by Chui and

Rangarajan [7]. They improved the original method by includ-
ing a transformation estimation step (e.g. thin-plate splines)
for the correspondence estimation. The idea is to alternate
two steps, correspondence and transform estimation. The same
technique can be combined with other local features, such
as shape contexts [6]. Here, we combine shape contexts with
spatial aspects in order to improve the correspondences.

While the expression matching method described in [1]
calculates matching using deformed graphs, we propose an
approach that is an extension of the efficient belief propagation
algorithm [3], which takes into account the contextual informa-
tion given by the neighbors. Here, the smoothness constraints
are replaced by spatial constraints in order to evaluate the
global arrangements of vertices. The goal is to minimize the
ambiguities when comparing pairs of vertices.

III. METHODOLOGY

To calculate the expression graphs, each symbol is rep-
resented by a vertex. Each vertex is associated to a (x, y)
coordinate in the plane. Thus, edges are defined to encode the
spatial configuration of symbols.

A. Technical background

The proposed approach is based on Markov random fields
(MRFs) and follows previous works [8], [9].

Let G = (V,E, µ, ν) be an attributed graph, V be the set
of vertices, E ⊆ V × V be the set of edges, µ be an attribute
vector assigned to each vertex, and ν be an attribute vector
assigned to each edge. The goal is to match a pair of graphs,
an input graph Gi representing an input expression, and a
model graph Gm representing a model expression.

Given Gi = (Vi, Ei, µi, νi) and Gm = (Vm, Em, µm, νm),
we define a MRF on Gi. For each input vertex p ∈ Vi, we must
find a corresponding model vertex, by computing a suitable
mapping (labeling) f : Vi → Vm which minimizes Eq. 1. Let
fp ∈ Vm be the label of p ∈ Vi.

E(f) =
∑
p∈Vi

Dp(fp) + λ1
∑

(p,q)∈Ei

M(fp, fq) . (1)

Each vertex has an attribute vector µi(p) in Gi (similarly in
Gm). Each directed edge has an attribute vector νi(p, q) in
Gi (similarly in Gm). The linear term Dp(fp) assigns a cost
proportional to the vertex attributes µi(p) and µm(fp). The
quadratic term M(fp, fq) evaluates the structural information
and assigns a cost proportional to the edge attributes νi(p, q)
and νm(fp, fq). Parameter λ1 weights the influence of the
quadratic term.

1) Belief propagation: The max-product belief propaga-
tion [3] is applied to minimize Eq. 1, based on a message
propagation strategy. For each iteration t, each vertex p sends
a message vector to each neighbor q, with dimension defined
by the number of labels.

mt
pq(fq) = min

fp

(
M(fp, fq)+Dp(fp)+

∑
s∈Np\{q}

mt−1
sp (fp)

)
(2)



where Np \ {q} denotes the neighbors of p except q. After
T iterations, each vertex can compute its belief vector: each
entry is based on vertex dissimilarity and contextual informa-
tion given by the neighbors. The goal is to choose a label
corresponding to the minimum entry in the belief vector.

bq(fq) = Dq(fq) +
∑
p∈Nq

mt
pq(fq) (3)

2) Efficiency via min convolution: Each message vector can
be efficiently computed by rewriting Eq. 2 in the form of
a min convolution [3], as shown in Eq. 4, where h(fp) =
Dp(fp) +

∑
mt−1
sp (fp). For instance, in Eq. 5, we replicate

the min convolution form for the Potts model, proposed by
Felzenszwalb and Huttenlocher [3].

mt
pq(fq) = min

fp

(
M(fp, fq) + h(fp)

)
(4)

mt
pq(fq) = min

(
h(fq),min

fp
h(fp) + d

)
(5)

In our case, we define H(fq) to include the structural evalua-
tion in the optimization process and rewrite Eq. 4 by replacing
h(fq) with H(fq), as shown in Eqs. 6 and 7, respectively.

H(fq) = min
fp∈Nfq∪{fq}

(
h(fp) +M(fp, fq)

)
, (6)

where Nfq denotes the neighbors of fq in the model graph.

mt
pq(fq) = min

(
H(fq),min

fp
h(fp) + d

)
(7)

B. Expression matching

To match pairs of expressions, we exploited shape contexts
(SC) [6] as vertex attributes. In our preliminary experiment,
each symbol is represented by its centroid, defined by the
respective stroke coordinates – thus each expression can be
viewed as a point set. Then, we calculate (global) SC of each
vertex, considering the coordinates of the remaining vertices.

To minimize the ambiguities between vertex attributes, we
exploited geometric properties based on the spatial distribution
of symbols. Ideally, the structure should be invariant among
the corresponding expressions.

In this preliminary study, we tested the proposed approach
by matching isomorphic graphs. In general, non-isomorphic
graphs are expected, but the goal here was to evaluate the
capabilities of the method. In order to build isomorphic graphs
for each pair of expressions, firstly a Delaunay triangulation
was computed from the first expression. Then, the same
structure was replicated to the second expression, based on
the true matchings. Although this may sound very artificial,
the distortions can be quite significant, as shown in Fig. 4.

Fig. 4. Two isomorphic graphs based on a Delaunay triangulation of the
above point set.

1) Linear term: The linear term of Eq. 1 can be defined
as the SC metric shown in Eq. 8 – if both hr(k) and hs(k)
are zero, the term is not considered in the summation. The
key idea of SC is to characterize each point in terms of
the distribution of the remaining points in its neighborhood.
Firstly, the neighborhood is divided into sectors by using polar
coordinates. Then, a normalized histogram can be computed
by counting the number of points in each sector. For each point
r, and for each bin k, we denote the corresponding normalized
histogram by hr(k).

dχ2(SC(r), SC(s)) =
1

2

∑
k

[hr(k)− hs(k)]2

hr(k) + hs(k)
(8)

In the present work, the vertex attributes are defined as the
global SC computed from the point sets. In this case, there
is one point per symbol and the information is based on the
spatial configuration of neighboring symbols. Note that, as
suggested in [1], we can also exploit local SC, by sampling
points from the symbol strokes, taking into account the local
information of each symbol shape.

2) Quadratic term: The structural term M(fp, fq) is di-
vided into two cases, defined by Eq. 9, following previous
works [8], [9]. The first case evaluates the edge attributes
(geometric properties of the spatial distribution of symbols),
where two vectors are compared in terms of length, |.| denotes
the absolute value and |~v| denotes the length of vector ~v.
During the experiments, all vector lengths were normalized



TABLE I
SELECTED 7 CHALLENGING CASES

Id #Symbols Model Input
1 20 caue 356 miguel 759
2 20 caue 356 danilo 284
3 20 caue 356 silas 366
4 20 miguel 759 daniel 214
5 66 caue 307 Fabricio 176
6 66 caue 307 rosario 447
7 45 caue 343 david 546

between 0 and 1. Similar to the Potts model, the second
case encourages adjacent vertices to have the same label, by
penalizing when there is no such corresponding edge in the
model graph.

M(fp, fq) =

{ ∣∣|νi(p, q)| − |νm(fp, fq)|
∣∣, if (fp, fq) ∈ Em

d, if (fp, fq) /∈ Em and fp 6= fq
(9)

IV. PRELIMINARY EXPERIMENT

To perform our experiments, we used expressions taken
from ExpressMatch dataset [2]. This dataset is composed of
56 models and 901 transcribed (input) expressions. From the
dataset, we have selected 7 challenging cases such as the ones
described in Section II and those are shown in Table I. Model
and input expressions are identified by their corresponding ID
defined in the ExpressMatch dataset.

Table II compares the results obtained with the original [2]
and the proposed techniques. The proposed approach outper-
formed the original method in all cases. It is interesting to
note that even for the largest expressions – pairs 5 and 6, that
include matrix and fraction structures – the proposed algorithm
achieved perfect correspondence. Fig. 5 shows expressions of
pair 5.

Fig. 5. Pair 5 of the evaluating expressions: caue 307 (top) and Fabricio 176
(bottom)

Although the results in Table II seem promising, it is
important to stress that they are based on an ideal structure,
which results from isomorphic graphs.

V. CONCLUSIONS AND FURTHER WORK

In this paper, we have introduced a structural matching
technique based on belief propagation to match corresponding

TABLE II
PRELIMINARY COMPARISON RESULTS

Original Proposed
Id #Errors %Errors #Errors %Errors
1 10 50% 0 0%
2 11 55% 2 10%
3 5 25% 3 15%
4 9 45% 1 5%
5 8 12.1% 0 0%
6 23 34.8% 0 0%
7 17 37.8% 0 0%

symbols from a pair of handwritten mathematical expressions.
In our preliminary experiments, we used spatial configuration
between symbols to produce isomorphic graphs to make
the structural information invariant among the corresponding
expressions. The results suggest that the proposed approach
can significantly improve the correspondences under such as-
sumptions. Thus, if it were possible to build nearly isomorphic
graphs for the expressions, the proposed method has potential
to improve current matching rates.

Current research is being dedicated to test the proposed
technique to non-isomorphic graphs by exploiting local shape
contexts (for each symbol shape) and to find realistic robust
structures to be used in practice. Future work includes a re-
search of more realistic structures, where edges are calculated
independently for each graph (input and model), and testing
the proposed approach on all expressions of the ExpressMatch
dataset.
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