Preliminary Studies on
Vascular Network Quantification 1n
Chick Chorioallantoic Membrane Images

Leandro T. De La Cruz, Nina S. T. Hirata
Institute of Mathematics and Statistics
University of Sdo Paulo
Sdo Paulo - Brasil
www.ime.usp.br/~{lticlia,nina}

Abstract—Angiogenesis is a natural process of new vessel
formation from existing ones. Due to its role in diseases such as in
tumor growth, angiogenesis assays are performed to understand
the effects of angiogenic and anti-angiogenic agents. A widely
used in vivo model, due to its rich vascular network, is the
chick chorioallantoic membrane (CAM). In order to quantify
angiogenesis, objective measures that allow comparison of ob-
served vascular networks are needed. In this work we investigate
vascular network quantification in CAM microscopic images.
Some common quantification metrics as well as metrics from
other domains for the quantification of angiogenesis in CAM
images are described and then computed on a small set of sample
images.
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I. INTRODUCTION

Angiogenesis is a natural process of new vessel formation
from existing ones. The phenomenon is observed in normal
biological development and in wound healing processes, but it
is also related to diseases such as cancer, rheumatoid arthritis,
diabetic retinopathy, among others [1]. Several angiogenesis
assays to study the effects of angiogenic and anti-angiogenic
agents are used [2]. Among them, a widely used in vivo model
is the chick chorioallantoic membrane (CAM). This model is
recommended due to its rich vascular network and because it
allows in vivo interaction during the embryo growth. Besides,
CAM appears to be easier to handle and less expensive than
other in vivo models [3].

Quantification of angiogenesis is at large extent still done
manually. Besides being a tiring task, manual quantification
may be highly subjective and thus affect comparative stud-
ies. In order to obtain objective quantification measures, ap-
proaches based on automated processing of optical microscopy
images of chick CAM images are being proposed [4]], [S].
Fig. [7] shows an egg and a microscope slide with CAM.

Image processing approaches for quantification of angiogen-
esis in CAM images are typically comprised of three steps:
vascular network segmentation, extraction of measures from
the detected features and validation of the obtained measures.
The whole process is schematized in Fig. 2

Simple measures such as vessel area density and density of
vessel extremities are usually computed [4], [S)]. In addition,
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Fig. 2. General scheme for angiogenesis quantification in CAM images

other measures such as fractal dimension [6] are also used. To
quantify microvasculature regions, texture information (e. g.
contrast, correlation and entropy) are used [4]], [S]. However
many of these measures are highly affected by the quality of
the image (resolution).

In this work we report an ongoing work on vascular network
quantification in CAM images. We list some of the metrics
frequently cited in the related literature and also in studies
of different application domains such as hydrology (river),
botany (plant leaves), and pulmonary bronchial system. Some
preliminary results for different quantification metrics applied
to CAM images are presented and discussed. The final goal
of this work is to establish a robust set of metrics to quantify
angiogenesis in CAM images.

II. VASCULAR NETWORK FEATURE DETECTION

In order to quantify vascular network, first some structural
features should be identified in the network image. Given a
CAM image, let us denote by f the corresponding binary
image containing the skeleton of the segmented vascular
network. Fig. 3] shows a CAM image and the skeleton of the
vascular network. Network features described hereafter are all
extracted from the skeleton image.
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CAM image and skeleton of its vascular network

A. End points

An end point is a pixel p in the skeleton that has just one
neighbor that is also in the skeleton. Formally, end points can
be expressed by the following function:

if f(p) = _
P(Dp) = { o () = 1 and T 10) =
(1)

where Ng(p) denotes the set of 8-connected neighbors of p.

B. Branching point

A pixel p € f is a branching point if it belongs to
the skeleton, has exactly three neighbors (according to 8-
connectivity) that are also in the skeleton, and its neighbors in
the skeleton are not 4-connected. Thus, branching points can
be defined by the following function:

1, if f(p) =1 and quNs(p) fla)=3
and Vp1,p2 € Ng(p), p1 # p2,

if f(p1) = f(p2) =1— p1 ¢ Na(p2)
0, otherwise,
(2)

where Ny(p) denotes the set of 4-connected neighbors of p.
Fig. ] shows examples of end points and branching points.
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Fig. 4. Interesting points of vascular network skeleton

C. Classification of vessel segments

In hydrology, branching structures of rivers can be classi-
fied according to different taxonomies (e.g., Horton, Shreve,
Strahler, Tokunaga and Hack taxonomies). Recent studies
show that the Strahler [7] and Tokunaga [8], [9] taxonomies
can be useful to characterize biological branching structures
such as trees, leaves, and bronchial and cardiovascular sys-
tems [10].

Each segment connecting end points to branching points or
branching points to branching points are analyzed from the

lowest to the highest hierarchical levels, and class labels are
assigned to each segment following some simple rules.

Strahler taxonomy: In the Strahler taxonomy (also known
as “Horton-Strahler” taxonomy), each segment connected to an
end point (except the root point) is classified as being of order
1. Then, other segments are labeled taking into consideration
the labels of the two segments that converge at their starting
point. If two segments of order k converge, the new segment is
labeled as being of order k 4+ 1; if two segments with different
order converge, then the order of the new segment is the
higher one of the two converging segments. An example of
this classification system is shown in Fig. [

Tokunaga taxonomy: In the Tokunaga taxonomy, each
segment in the structure has two order values: a child value
(vc) and a father value (vy). The v, value corresponds to the
Strahler order and the vy value is the Strahler order of the
other segment when convergence occurs [8]. An example of
this classification system is shown in Fig. [5] This taxonomy is
richer in the sense that it differentiates “bifurcation” from side
branches, while Strahler taxonomy does not. It is applied on
drainage network, but few applications in biology are reported.
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Classification systems (figures extracted from [9])

III. QUANTIFICATION MEASURE COMPUTATION
A. Skeleton representation as a graph

In order to facilitate computation, we represent the vascular
network skeleton as an undirected graph G = (V| E), where
V = Vena U Viep 1s a set of vertices composed by both ending
(Vena) and branching (Vi.p) points, and E is the set of edges
corresponding to vessel skeleton segments between two points
in V. After detecting end and branching points, the vertex set
is created and then an adapted “depth-first search” algorithm
is used to create the edges. The weight of each edge e € F is
the number of pixels of the skeleton segment that corresponds
to it.

Graph representation allows independent treatment of each
component of the vascular network. It should be noted that
since CAM images correspond to small regions of the whole
membrane, often only fragments of the whole network are
present in an image and thus that fact should be taken into
consideration when measures are computed. Fig. [6] shows two



examples of graph representation of vascular networks. Red
dots correspond to end points, while dark blue ones correspond
to branching points. The color of the edges indicate graph
components. Note also that most of the vertices close to the
image boundary are not actual end points, but are included
only to represent the skeleton segments as they are seen in the
image.
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Fig. 6.

Representation of a vascular network skeleton as a graph.

B. Quantification measures

Let m x n be the dimensions in pixels of the skeleton image
f. Some commonly used metric refers to the density of the
network, of its skeleton, of end points and so forth.

Zpef f(p)

this is the vessel density thatnclonsﬁlers not only skeleton
but also the caliber of the vessels. However, vessel density
depends much more than skeleton density on precise
segmentation of the vessels.

o Skeleton density: D, = . Closely related to

Ven
o Ending points density: D.,q = A
Zpef f(p)
. . o | Vieal
o Branching points density: Dy, = =————

o Average length of segments of level i: L; =
> cer, weight(e)
|Ei .
corresponding to segments of order .

, where F; denotes the set of edges

All metrics that involve number of pixels should be scaled
according to image spatial resolution. This is not done in this
work because all images considered have a same resolution.

Let S; = |E;| be the total of segments of order i and let
L; be their mean length. Horton [11]] introduced the branching
ratio (Rg) and the length-order ratio (R ) concepts, which are
defined as follows:

S; Lita

C RL= 3)
Two of Horton’s laws establish that both Rg and Ry, are nearly
constant for a range of stream order for all river network.
These laws also apply to the Strahler taxonomy.

If we consider classification based on Tokunaga taxonomy,
a branching-number matrix 7" can be built, where each element
T;; of T represents the total of segments with v, = i and vy =
7. Information in this matrix is useful to analyze the vascular
network growth. For example, for the network in Fig. [5[b)

Rs =

Sit1

we have that 717 = 6, T2 = 3 and T3 = 2, meaning that
among eleven segments of order 1, three converge to segments
of order 2, while two converge to segments of order 3.

Another useful measure is the spatial spreadness of the
points of interest. To capture this information, let K be a
positive integer and € be a positive number in R. Then, we
define for any end point p:

K.(p) ={q € Vena : lg — p|| < e}

and
ex(p) =min{e e R: K.(p) > K}

These values can be averaged considering all end points

in the image. Thus, given f, we define K.(f) =

|Velnd| ZPEVend K. (p) and %(f) = \Velnd\ ZPGVend gK(p)'
IV. PRELIMINARY RESULTS AND DISCUSSION

The measures presented above were computed for manu-
ally segmented vascular networks of 7 CAM images shown
in Fig. [7] The obtained values are shown in Table [l These
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Fig. 7. Set of 7 CAM images

TABLE I
QUANTIFICATION METRICS: EXPRESSED IN PERCENTAGE

‘ CAM img. ‘ DZ Dend Dbch ‘
1 1.133  0.667  0.557
2 1.391  0.649  0.450
3 0.662  0.578  0.258
4 0918  0.540  0.420
5 1.027  0.745  0.578
6 1.301  0.795 0.619
7 0.884 0.616  0.322

measures, as they are single values, correspond to poor rep-
resentations of network structure. Instead, more representative



information can be obtained using measures such as the Rg
and Ry ratios.

Branching and length-order ratio for segments classified
according to the Strahler taxonomy are shown in Fig. [8] and
Fig. 0] respectively. As can be seen in the figures, CAM
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Fig. 8. Branching ratios of 7 CAM images
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Fig. 9. Length-order ratios of 7 CAM images

images 1 and 7 satisfy fairly well the two Horton’s laws,
while others satisfy only one or none of them. However, these
measures should be looked cautiously since each CAM image
corresponds to only a small region of the whole membrane.
The spreadness of end points are represented by € x K. and
K x g graphs shown in Fig.[T0]and Fig.[IT] respectively. Note
that CAM images 1, 2, 5 and 6 present very similar spreadness
curve in accordance with what can be observed in the images.
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Fig. 10.  Spreadness of the ending points

V. FUTURE WORKS

Results obtained so far indicate that even in membranes
of chick embryo from similar biological and environmental
conditions, the single valued measures vary significantly from
image to image. On the other hand, metrics such as segment

Fig. 11.  Spread of the ending points

ratios and spreadness graphs seem to be able to capture
structural and spatial information of the vascular network.

An important issue to be tackled is the validation of the
measures. Some of the future steps include investigation of
additional metrics and comparison of the measures between
normal chick embryos (control) and treated embryos, aiming to
find a set of metrics that can be useful to quantity angiogenesis
robustly.
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