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Abstract—Mass-Spring Models (MSM) are frequently used for
modeling and simulation of deformable objects for computer
graphics applications due to their simplicity and computational
efficiency. However, the model parameters (stiffness coefficients,
damping and masses) are not related to the constitutive laws of
elastic material in an obvious way. The computation of mass-
spring parameters from a model based on continuum mechanics
is a possibility to this problem. More recently, computer aided
design (CAD) and finite element (FEM) community realized the
need to unify CAD and FEM descriptions which motivates the
revision of dynamic NURBS (D-NURBS) approach for modeling
deformable objects. In this paper we address the problem of
determining stiffness coefficients of the MSM to mimic D-
NURBS approach. We validate the methodology for deriving
MSM systems by comparing the obtained results with D-NURBS
evolution nearby the steady-state configuration.

Keywords-Physically based Modeling, Mass-Spring Model, Dy-
namic NURBS.

I. INTRODUCTION

In the last decades, a wide variety of physically based
models has been developed by the computer graphics commu-
nity to address the challenge of simulating natural elements
and deformable materials [1]]. This paper is focused on the
simulation of deformable objects for virtual environments. The
mechanical behavior of elastic materials can be simulated by
continuum elasticity models that describes how the objects
deform under applied forces. In this case, constitutive laws
are used for the computation of the symmetric internal stress
tensor o, and a conservation law gives the final (Partial
Differential Equation) PDE that governs the dynamic of the
material [1]. Continuous systems have infinite degrees of free-
dom which difficult its description for both the geometric and
dynamic aspects. In mathematical terms, we are dealing with
infinite basis functions, maybe uncountable. One possibility
to simplify the problem is to consider finite dimensional
representation with enough flexibility in order to represent
the solution with the desired precision. In the context of
mechanical systems the Finite Element Method (FEM) is the
traditional way to perform this task.

However, as pointed out in [2], NURBS framework can
be also considered. That is why geometric modeling and
FEM community realized the need to unify CAD and FEM
descriptions (Isogeometric Analysis [2]) which motivates a
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revision of D-NURBS concepts as proposed in [3]. Other
possibility for elastic objects simulation is to apply discrete
models, based on mass-spring models (MSM). In this case,
the object geometry is represented by a mesh and its nodes
are treated like mass points while each edge acts like a spring
connecting two adjacent nodes [4].

MSM models are simple to implement and can be faster
then the continuous ones, and so, more suitable for real time
applications [4]. However, the main limitation of MSM models
is the difficulty of designing them to represent the mechanical
behavior of deformable bodies with enough accuracy [5]]. In
this article, a preliminary study of the general problem of
determining parameters of the MSM, addressing specifically
the problem of calculating the stiffness coefficients of the
springs of the model. Particularly, we use D-NURBS as
reference model and follow [[6] to compute the appropriate
stiffness coefficients of the springs by comparing the stiffness
matrices generated by both the D-NURBS and the linearize
MSM approaches.

The paper is organized as follows. In section |lI| we show
the key points of the D-NURBS and MSM formulations. In
section [III] we describe our proposal to derive MSM systems
from dynamic NURBS approach. The paper ends with com-
putational experiments and perspectives, presented in sections

and [V] respectively.
II. D-NURBS AND MSM APPROACHES

The idea behind D-NURBS is to submit an initial NURBS
curve to a Newtonian dynamics generated by an external
potential, internal (elastic) and dissipation forces. Therefore, a
natural way to parameterize the evolution of the curve along
the time ¢ is:

> i Pi(t)wi(t) By (u)
D iz wit)Bik (u)
where B; ) are B-spline functions of order k, p;(t) are the
control points and w;(t) the weights which become general-
ized coordinates of the system and can be concatenated as

P =[(®f,w0) (o] w1) (PF,wn)] " € RICHD 7],
As time goes on, the system changes its configuration due
to internal and external forces. Therefore, the evolution of

c(u,t) = , uwel0,1],
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the system can be seem as a continuous path, or curve, p(t)
in the configuration space, parameterized through the time t.
The Hamilton’s Principle gives a methodology to write the
evolution equation of the system in terms of the generalized
coordinates and time ¢. It states that for a mechanical systems
with kinetic energy T = T (p) , where p = dp/dt, with
all force fields derivable from a generalized scalar potential
V=Up+F (pp), the time evolution satisfies the asso-

ciated Euler-Lagrange equations, which renders the following
D-NURBS evolution equation [[7]:

8-Eemt
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where matrices M, D, Kp and I are computed by equations:

Mp+ Dp+ Kpp = — — Ip, 2)

M = / pJT Jdu; D= / ~vJT Jdu; (3)

KD:/(QJEJu'i_ﬁJEuJuu) du; I://JJTjdu; 4)

and J € R3*4(n+1) i5 the associated Jacobian, defined in [3].

In the MSM system the mesh nodes work as masses and
the edges define the linear springs with damping. So, given a
particle ¢ with mass and position vector x;, the force system

is composed by the elastic (f7,,.,;.), gravitational (f},,,) and
damping (féamp) forces, defined respectively, by [4]:
, (xi — x;)
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where V' is the set of nodes linked to x;, k;; is the stiffness
of the spring linking the nodes x; and x; and [;; the spring
rest length;

f;rav = m;g; fglamp = 72X1 (6)
with g being the gravity field and ~; is the damping factor.

Following Newton’s Laws, we get the following evolution

equation:

miX; = félastic + féamp + f;rav (7

Both equations (2)) and (/) need initial conditions composed
by the initial configuration and velocity to assure existence
and uniqueness of the solution. These conditions will be also
the input to numerical methods based on finite difference
method (FDM) in time and Gauss quadrature for computing
the integrals (see section 4 of [3]]) to get the matrices M, D,
Kp and I in expressions (3) and (@).

III. PROPOSED METHOD

The aim of the proposed method is to compute the MSM
parameters such that it behaves like the D-NURBS model for
small deformations nearby the steady-state configuration. We
will focus on deformable surface models but the methodology
can be straightforward extend to 3D. The topology of the
MSM is pictured on Figure [T which shows how the particles
are connected by structural (edges) and shear (diagonals)
springs to account for tension.

Figure 1. MSM 2D Lattice.

In this model, the stiffness coefficients of the springs are
keqge(structural) and kg;q4(shear). The steady-state configura-
tion of the D-NURBS model can be obtained by solving the

equation:
aEezt (8)

Jp
whose solution is the steady-state solution of D-NURBS
equation (2)). It is clear that the stiffness matrix Kp takes
a central role in expression () in the sense that it gives the
elastic forces that balance the external forces in the steady-
state configuration.

Therefore, a simple way to derive a MSM model that
mimics D-NURBS nearby the steady-state solution is to find
the MSM parameters that generate a linearized MSM model
that approximates the D-NURBS one. In order to perform this
task we must linearize the MSM governing equation by using
the first order approximation for the force of the spring that

0

connects nodes i and j around the rest nodal position (x?, xj):

Kpp = -

3f(xi, Xj) af(Xi, Xj) (Xi — X?)
S )

Xi Xj (% — Xj)
The first term of expression (9) can be discarded because
fi5) = £ (x2,x9) = —f (x9,x7), and so, they will cancel

each other when computing the resultant force. The second and
third terms can be obtained by computing the derivatives of
expression @) respect to X; and x;, respectively. The process
of assembling the linearized equations for the springs in the
mesh of Figure [I] gives a symmetric stiffness matrix Kg. The
linearized MSM model has the governing equation:

Ms% 4+ Dsx + Kg (x —x°) = F (x) (10)

Before proceeding, we must observe that MSM is for-
mulated in Euclidian spatial coordinates while D-NURBS
uses generalized coordinates. Therefore, we would make both
formulations compatible before establishing relationships. In
order to perform this task suppose that the MSM mesh has N
nodes that belong to the D-NURBS surface at time ¢ = 0. So,
there exist a parameter value u = u,; such that

Tl
xip | =J (us, p(0),0).p(0)
T3

(1)



for ¢+ = 0,1,..., N. Therefore, by supposing that the initial
configuration is the steady-state one and that we have small
displacements nearby this configuration we can write the MSM
steady-state equation (Kg (x — x°) = F (x)) as:

12)

[ J (u0,p(0),0). (p(t1) —P(0)) ]
J (u1,p(0),0) . (p(t1) — p(0))
J (u2,p(0),0) . (p(t1) — p(0))

=F(z).

L J (Unap(o)v O) . (p(tl) - p(O)) J

where ¢; is a generic time instant. So, we can finally write:

O Kg-Q-(p(t) —p(0)) =Q"-F(x)  (13)
where:
[ J (uo, p(0),0) 7
J (u1,p(0),0)
0= J(u2;p(0)a0) (14)

L J (Un; p(o)a 0)

We shall observe that Q € R3(tDx4(n+l) and K¢ €
R3(n+1)x3(n+1) “and so, the above matrix operations are well
defined. Therefore, in order to get a MSM that simulates the
D-NURBS nearby the steady-state configuration we shall solve
the problem

. T 2
1%1sn||§z Ks-Q—Kpl|,- (15)

The solution of the problem above gives the stiffness
coefficients of the springs. Next, we must find the mass m;
associated to each node x; and the damping fator ~; of
the MSM. In the actual implementation, we set to null the
damping factor. To get the mass, we compute the eigenvalues
of the mass matrix M and then test each one to find the best
value for all the masses. Specifically, we sort the non-null
eigenvalues in decreasing order, choose the smallest one Ay,
and simulate the MSM obtained by setting m; = A, Then,
we compare both the MSM and D-NURBS systems and stop if
their close enough, that means the difference in their behaviour
is minimum. Otherwise, we take the next eigenvalue and repeat
the process.

The D-NURBS equation () without damping is simulated
with initial conditions:

P (0) = po, (16)

p(0) = dp,

using the FDM described in [3], where dp is a small velocity
in generalized coordinates. Once defined the initial velocity in
D-NURBS coordinates space, its counterpart in Euclidian co-
ordinates can be obtained by using the fact that (see expression

a7

(39) of [3]):

-0
Ti1

% | =J (us, p(0),0).p(0), i=0,1,2,...,n

.0
L3

(18)

So, the initial velocity for MSM is % (0)= Jv, where
dv = Qp(0) and p(0) is the initial velocity for the D-NURBS.
The initial configuration of the MSM is obtained by equation
(TT) and the MSM simulation is performed using the FDM
described in [8]].

IV. EXPERIMENTS

We have developed an experimental environment based on
the D-NURBS approach with constraints. In our setting we
consider the case of an elastic surface with dimension 5 x 3m?
with negligible transverse section fixed at boundary, as shown
in Figure 24

The NURBS surface geometry is parameterized by (u,v),
with 0 < w,v < 1. It is instantiated using an open knot vector
U = (0,0,0,0,0.25,0.5,0.75,1,1,1,1) in the u direction,
with B-spline functions of order p = 4 (degree p—1 = 3), and
knot vector V = (0,0,0,0,0.5,1,1,1,1) in the v direction,
with B-spline functions of order ¢ = 4 (degree ¢ — 1 = 3).
Therefore, the 2D spline space is given by the tensor product
between the 1D B-spline bases and has dimension (n — p) X
(m—q) = (11—4)x(9—4) = 7x5 , which means that we have
35 controls points, as pictured on Figure [2a] Each point of the
NURBS surface is influenced by 4 control points. Therefore,
to set geometric constraints that keep the surface fixed at the
boundary, we must let 32 fixed control points. We consider
null the external force field and define control points position
and weights at ¢ = 0 according to the cartesian product
P, x P, x {2} where P, = (0,0.25,0.75,1.52,2.5,2.75, 3)
and P, = (0,0.83,2.5,4.16,5) and W = (1,1,...,1). In
our actual simulation, we keep the weights constant along the
simulation in order to simplify the D-NURBS evolution.

Besides, we set p(0) = (Piz = 0,piy = 0,p;; =
—0.2,w; = 0; ¢ = 0,1,...,34) to complete the initial
conditions. To perform spatial integration we define 4 points
in Gauss quadrature and for time integration of equation (2)
we consider the finite difference scheme described in [3]], with
time step At = 0.08s, respectively. Once the external forces
are null, the steady-state solution of D-NURBS corresponds to
the same configuration shown in Figure [2a In the case of D-
NURBS surfaces, the corresponding matrix K p of expression
has 5 parameters o, 8ij, ¢, j = 1,2 [7]. In the actual
implementation we set non-null only the bending stiffness
coefficients 517 = [22 = 0.01 and set the mass density
w=25.

The MSM structural mesh follows the topology presented
on Figure 2b] Its time integration follow the finite difference
scheme presented in [8] with time step At = 0.08s. We
generate the MSM system using the mesh defined by the D-
NURBS patches at ¢ = 0, that are pictured on Figure
Therefore,

xij (0) = J (ui; v5,p(0),0) .p(0), (19)
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(a) Controls points at time ¢t = Os

0

(b) NURBS patches and MSM structural topology
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(c) D-NURBS at t = 4s

Figure 2. Mesh configuration

withi=20,1,---,4; j=0,1,2, u; € U and v; € V.

Now, we compute the analytical expression for Kg as a
function of keqge and kg;q4(equation @)). The process of
assembling the linearized equations for the springs in the mesh
of Figure 2b] gives a symmetric 45 x 45 stiffness matrix Kg.
Then, we solve the optimization problem (T3)) in order to find
the best stiffness coefficients. We apply the standard trust-
region optimization method [9] to perform this task. In this
way, we have derived the MSM from the D-NURBS model.

The next step is simulate the two models in order to verify
the quality of the result for small perturbations of the steady-
state solution. For simplicity, we set null damping for both
models. Then, we perform temporal integration of expressions
(]Z[) and (m) where the weights w; were considered constant, so
we have simplified the D-NURBS by removing the term g—;
from the Jacobian. Figure [2c| shows the D-NURBS at ¢t = 4s
using the initial conditions described above.

The initial velocity % (0) of the MSM model is obtained
following expression and the initial configuration x (0)
is obtained through equation (I9). The best masses value is
given by the eigenvalue A = 0.005 from the mass matrix M.

Figure [3] shows the time evolution in the z direction of
the central node of Figure 2B for D-NURBS and MSM
simulations. The obtained MSM parameters are: m = 0.005,
kedge = 2.7225 and kg0 = 0.8661. The z,y coordinates
remain unchanged due to the initial conditions and the fact
that the external force is null. We observe a suitable agreement
between both models which indicates that the derived MSM
mimics well the D-NURBS almost nearby the steady-state
position.

Position Node 8 at Z-axis
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Figure 3. Comparing D-NURBS vs. MSM

V. CONCLUSIONS AND PERSPECTIVES

Despite of the simplicity and computational efficiency of
MSM systems the model parameters (stiffness coefficients,
damping and masses) are not directly related to the constitutive
laws of elastic material which limitates their applications. In
this paper we address this problem through a metodology
for determining stiffness coefficients of the MSM that mimic
D-NURBS approach nearby the steady-state configuration.
We validate the proposed methodology by comparing the
obtained results with D-NURBS evolution. We observe in this
preliminary study a good agreement between both the systems.

Further direction of this research is to adapt the eigenprob-
lem approach presented in [[] which performs the analysis of
the spectral properties and principal directions of the stiffness
matrices in order to find most suitable parameters for MSM.
Besides, damping and mass parameter computation can be
incorporated in the methodology following the reference [2].
We can also augment the model by adding interleaving springs
for bending [4].
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